3.4导数运算法则

3.4.1 函数和差求导法则

如果函数u=u(x)u=u(x)以及v=v(x)v=v(x)都在x点处可导,则:

[u(x)±v(x)]=u(x)±v(x)[u(x)\pm v(x)]' = u'(x)\pm v'(x)



我们可以根据导数的定义进行证明:

[u(x)±v(x)]=limx0[u(x+x)±v(x+x)][u(x)±v(x)]x[u(x)\pm v(x)]' = \lim_{\triangle x \to 0} \frac{[u(x+\triangle x)\pm v(x+\triangle x)]-[u(x)\pm v(x)]}{\triangle x}

=limx0u(x+x)u(x)x±limx0v(x+x)v(x)x= \lim_{\triangle x \to 0} \frac{u(x+\triangle x)-u(x)}{\triangle x}\pm\lim_{\triangle x \to 0} \frac{v(x+\triangle x)-v(x)}{\triangle x}

=u(x)±v(x)= u'(x)\pm v'(x)


###3.4.2函数积的求导法则 如果函数u=u(x)u=u(x)以及v=v(x)v=v(x)都在x点处可导,则:

[u(x)v(x)]=u(x)v(x)+u(x)v(x)[u(x)v(x)]' = u'(x)v(x)+u(x)v'(x)



同样可以利用导数的定义进行证明:

[u(x)v(x)]=limx0u(x+x)v(x+x)u(x)v(x)x[u(x)v(x)]' = \lim_{\triangle x \to 0} \frac{u(x+\triangle x) v(x+\triangle x) -u(x)v(x)}{\triangle x}

=limx0u(x+x)v(x+x)u(x)v(x+x)+u(x)v(x+x)u(x)v(x)x= \lim_{\triangle x \to 0} \frac{u(x+\triangle x) v(x+\triangle x) -u(x)v(x+\triangle x)+u(x)v(x+\triangle x)-u(x)v(x)}{\triangle x}

=limx0[u(x+x)u(x)]v(x+x)+u(x)[v(x+x)v(x)]x= \lim_{\triangle x \to 0} \frac{[u(x+\triangle x) -u(x)]v(x+\triangle x) + u(x)[v(x+\triangle x)-v(x)]}{\triangle x}

=limx0[u(x+x)u(x)]xv(x+x)+u(x)limx0v(x+x)v(x)x= \lim_{\triangle x \to 0} \frac{[u(x+\triangle x) -u(x)]}{\triangle x}v(x+\triangle x)+ u(x)\lim_{\triangle x \to 0} \frac{v(x+\triangle x)-v(x)}{\triangle x}

=u(x)limx0v(x+x)+u(x)v(x)= u'(x) \lim_{\triangle x \to 0} v(x+ \triangle x)+ u(x) v'(x)

=u(x)v(x)+u(x)v(x)= u'(x) v(x)+ u(x) v'(x)



根据函数积的求导法则,可以推出:

f(x)=Cg(x)f(x)=Cg(x), 其中C为常数,则有:

f(x)=Cg(x)+Cg(x)=Cg(x)f'(x) = C'g(x) + C g'(x) = Cg'(x)



3.4.3函数商的求导法则

如果函数u=u(x)u=u(x)以及v=v(x)v=v(x)都在x点处可导,以及v(x)0v(x) \ne 0则:

[u(x)v(x)]=limx0u(x)+xv(x)+xu(x)v(x)x\left [\frac{u(x)}{v(x)} \right ]' = \lim_{\triangle x \to 0} \frac{\frac{u(x)+\triangle x}{v(x)+\triangle x}-\frac{u(x)}{v(x)}}{\triangle x}

=limx0u(x+x)v(x)u(x)v(x+x)v(x+x)v(x)x= \lim_{\triangle x \to 0} \frac{u(x+\triangle x) v(x) -u(x)v(x+\triangle x ) }{v(x+\triangle x )v(x)\triangle x }

=limx0[u(x+x)u(x)]v(x)u(x)[v(x+x)v(x)]v(x+x)v(x)x= \lim_{\triangle x \to 0} \frac{[u(x+\triangle x) -u(x)] v(x) -u(x)[v(x+\triangle x )-v(x)] }{v(x+\triangle x )v(x)\triangle x }

=limx0u(x+x)u(x)xv(x)u(x)v(x+x)v(x)xv(x+x)v(x)= \lim_{\triangle x \to 0} \frac{\frac{u(x+\triangle x) -u(x)}{\triangle x} v(x) -u(x)\frac{v(x+\triangle x )-v(x)}{\triangle x} }{v(x+\triangle x )v(x)}

=u(x)v(x)u(x)v(x)v2(x)= \frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}



3.4.4 链式法则(复合函数求导法则)

如果u=g(x)u=g(x)在x点可导,而y=f(u)y=f(u)u=g(x)u=g(x)点可导,那么y=f(g(x))y=f(g(x))在x点可导,并且导数为:


f(x)=f(u)g(x)f'(x) = f'(u)g'(x)


首先举个例子帮助你理解。

假如你可以用人民币换美元,可以用美元换比特币。假设在某个时间点,人民币换美元的汇率为0.12,美元对比特币的汇率为0.0001,则人民币对比特币的汇率就可以用0.12乘以0.0001来计算。

下边进行证明。

limu0yu=f(u) \lim_{\triangle u \to 0}\frac{\triangle y}{\triangle u}=f'(u)

yu=f(u)+α(u) \Rightarrow \frac{\triangle y}{\triangle u} = f'(u) + \alpha (\triangle u)


α(u)\alpha (\triangle u)是当u0\triangle u \longrightarrow 0时的无穷小。上式两边同时乘以u\triangle u


y=f(u)u+α(u)u \Rightarrow \triangle y = f'(u) \triangle u + \alpha (\triangle u) \triangle u


等式两边同时除以x\triangle x,可以推导出:


yx=f(u)ux+α(u)ux \Rightarrow \frac{\triangle y}{\triangle x} = f'(u) \frac{\triangle u}{\triangle x} + \alpha (\triangle u) \frac{\triangle u}{\triangle x}


然后两边取极限:


limx0yx=limx0[f(u)ux+α(u)ux] \Rightarrow \lim_{\triangle x \to 0} \frac{\triangle y}{\triangle x} = \lim_{\triangle x \to 0} \left [f'(u) \frac{\triangle u}{\triangle x} + \alpha (\triangle u) \frac{\triangle u}{\triangle x}\right ]


根据可导函数必连续,可以得知当x0\triangle x \longrightarrow 0 时,u0\triangle u \longrightarrow 0。从而可以得到:


limx0α(u)=limu0α(u)=0\lim_{\triangle x \to 0} \alpha (\triangle u) = \lim_{\triangle u \to 0} \alpha (\triangle u)=0


又因为:


limx0ux=g(x)\lim_{\triangle x \to 0} \frac{\triangle u}{\triangle x}=g'(x)


所以:


limx0yx=f(u)limx0ux\lim_{\triangle x \to 0} \frac{\triangle y}{\triangle x}=f'(u) \lim_{\triangle x \to 0} \frac{\triangle u}{\triangle x}

f(x)=f(u)g(x) \Rightarrow f'(x) = f'(u)g'(x)


3.4.5 例题

我们尝试用上边的导数运算法则对下边这个函数求导:

f(x)=(exsinx+3x)2f(x)=(e^x \sin x+3x)^2


这是一个复合函数求导,我们定义:

u=g(x)=exsinx+3xu=g(x)=e^x \sin x+3x

f(u)=u2f(u)=u^2

f(x)=f(u)g(x)f'(x)=f'(u)g'(x)

f(x)=2ug(x)f'(x)=2u \cdot g'(x)

代入u=g(x)=exsinx+3xu=g(x)=e^x \sin x+3x

f(x)=2(exsinx+3x)g(x)f'(x)=2(e^x \sin x+3x) \cdot g'(x)

接下来需要求g(x)g'(x)

应用求导的四则运算规则有:

g(x)=exsinx+excosx+3g'(x)=e^x \sin x + e^x \cos x +3

代入f(x)f'(x)的表达式中,得到最终答案:

f(x)=2(exsinx+3x)(exsinx+excosx+3)f'(x)=2(e^x \sin x+3x) \cdot (e^x \sin x + e^x \cos x +3)

results matching ""

    No results matching ""